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Abstract

Background: The spatial scan statistic is a widely used statistical method for the automatic
detection of disease clusters from syndromic data. Recent work in the disease surveillance
community has proposed many variants of Kulldorff's original spatial scan statistic, including
expectation-based Poisson and Gaussian statistics, and incorporates a variety of time series analysis
methods to obtain expected counts. We evaluate the detection performance of twelve variants of
spatial scan, using synthetic outbreaks injected into four real-world public health datasets.

Results: The relative performance of methods varies substantially depending on the size of the
injected outbreak, the average daily count of the background data, and whether seasonal and day-
of-week trends are present. The expectation-based Poisson (EBP) method achieves high
performance across a wide range of datasets and outbreak sizes, making it useful in typical
detection scenarios where the outbreak characteristics are not known. Kulldorff's statistic
outperforms EBP for small outbreaks in datasets with high average daily counts, but has extremely
poor detection power for outbreaks affecting more than 2

3 of the monitored locations.
Randomization testing did not improve detection power for the four datasets considered, is
computationally expensive, and can lead to high false positive rates.

Conclusion: Our results suggest four main conclusions. First, spatial scan methods should be
evaluated for a variety of different datasets and outbreak characteristics, since focusing only on a
single scenario may give a misleading picture of which methods perform best. Second, we
recommend the use of the expectation-based Poisson statistic rather than the traditional Kulldorff
statistic when large outbreaks are of potential interest, or when average daily counts are low.
Third, adjusting for seasonal and day-of-week trends can significantly improve performance in
datasets where these trends are present. Finally, we recommend discontinuing the use of
randomization testing in the spatial scan framework when sufficient historical data is available for
empirical calibration of likelihood ratio scores.

Background
Systems for automatic disease surveillance analyze
electronically available public health data (such as
hospital visits and medication sales) on a regular basis,
with the goal of detecting emerging disease outbreaks as

quickly and accurately as possible. In such systems, the
choice of statistical methods can make a substantial
difference in the sensitivity, specificity, and timeliness of
outbreak detection. This paper focuses on methods for
spatial biosurveillance (detecting clusters of disease cases
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that are indicative of an emerging outbreak), and
provides a systematic comparison of the performance
of these methods for monitoring hospital Emergency
Department and over-the-counter medication sales data.
The primary goal of this work is to determine which
detection methods are appropriate for which data types
and outbreak characteristics, with an emphasis on
finding methods which are successful across a wide
range of datasets and outbreaks. While this sort of
analysis is essential to ensure that a deployed surveil-
lance system can reliably detect outbreaks while keeping
false positives low, most currently deployed systems
which employ spatial detection methods simply use the
default approaches implemented in software such as
SaTScan [1].

In our typical disease surveillance task, we have daily
count data aggregated at the zip code level for data
privacy reasons. For each zip code si, we have a time
series of counts ci

t , where t = 0 represents the current day
and t = 1 ... tmax represent the counts from 1 to tmax days
ago respectively. Here we consider two types of data:
hospital Emergency Department (ED) visits and sales of
over-the-counter (OTC) medications. For the ED data,
counts represent the number of patients reporting to the
ED with a specified category of chief complaint (e.g.
respiratory, fever) for that zip code on that day. For the
OTC sales data, counts represent the number of units of
medication sold in a particular category (e.g. cough/cold,
thermometers) for that zip code on that day. Given a
single data stream (such as cough and cold medication
sales), our goal is to detect anomalous increases in
counts that correspond to an emerging outbreak of
disease. A related question, but one that we do not
address here, is how to combine multiple streams of
data, in order to increase detection power and to provide
greater situational awareness. Recent statistical methods
such as the multivariate Poisson spatial scan [2], multi-
variate Bayesian spatial scan [3,4], PANDA [5,6], and
multivariate time series analysis [7-9] address this more
difficult question, but for simplicity we focus here on the
case of spatial outbreak detection using a single data
stream.

For this problem, a natural choice of outbreak detection
method is the spatial scan statistic, first presented by
Kulldorff and Nagarwalla [10,11]. The spatial scan is a
powerful and general method for spatial disease surveil-
lance, and it is frequently used by the public health
community for finding significant spatial clusters of
disease cases. Spatial scan statistics have been used for
purposes ranging from detection of bioterrorist attacks to
identification of environmental risk factors. For example,
they have been applied to find spatial clusters of chronic
diseases such as breast cancer [12] and leukemia [13], as

well as work-related hazards [14], outbreaks of West Nile
virus [15] and various other types of localized health-
related events.

Here we focus on the use of spatial scan methods for
syndromic surveillance, monitoring patterns of health-
related behaviors (such as hospital visits or medication
sales) with the goal of rapidly detecting emerging
outbreaks of disease. We assume that an outbreak will
result in increased counts (e.g. more individuals going to
the hospital or buying over-the-counter medications) in
the affected region, and thus we wish to detect
anomalous increases in count that may be indicative of
an outbreak. Such increases could affect a single zip
code, multiple zip codes, or even all zip codes in the
monitored area, and we wish to achieve high detection
power over the entire range of outbreak sizes. We note
that this use of spatial scan statistics is somewhat
different than their original use for spatial analysis of
patterns of chronic illness, in which these methods were
used to find localized spatial clusters of increased disease
rate. One major difference is that we typically use
historical data to determine the expected counts for
each zip code. We then compare the observed and
expected counts, in order to find spatial regions where
the observed counts are significantly higher than
expected, or where the ratio of observed to expected
counts is significantly higher inside than outside the
region.

Many recent variants of the spatial scan differ in two
main criteria: the set of potential outbreak regions
considered, and the statistical method used to determine
which regions are most anomalous. While Kulldorff's
original spatial scan approach [11] searches over circular
regions, more recent methods search over other shapes
including rectangles [16], ellipses [17], and various sets
of irregular regions [18-20]. This paper focuses on the
latter question of which statistical method to use. While
Kulldorff's original approach assumes a population-
based, Poisson-distributed scan statistic, recent papers
have considered a variety of methods including expecta-
tion-based [21], Gaussian [22], robust [23], model-
adjusted [24], and Bayesian [3,4,25] approaches.

In this study, we compare the expectation-based Poisson
and expectation-based Gaussian statistics to Kulldorff's
original statistic. For each of these methods, we consider
four different methods of time series analysis used to
forecast the expected count for each location, giving a
total of 12 methods to compare. Our systematic
evaluation of these methods suggests several fundamen-
tal changes to current public health practice for small-
area spatial syndromic surveillance, including use of the
expectation-based Poisson (EBP) statistic rather than the
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traditional Kulldorff statistic, and discontinuing the use
of randomization testing, which is computationally
expensive and did not improve detection performance
for the four datasets examined in this study. Finally,
since the relative performance of spatial scan methods
differs substantially depending on the dataset and
outbreak characteristics, an evaluation framework
which considers multiple datasets and outbreak types
is useful for investigating which methods are most
appropriate for use in which outbreak detection scenar-
ios.

Methods
The spatial scan statistic
In the spatial disease surveillance setting, we monitor a
set of spatial locations si, and are given an observed
count (number of cases) ci and an expected count bi
corresponding to each location. For example, each si may
represent the centroid of a zip code, the corresponding
count ci may represent the number of Emergency
Department visits with respiratory chief complaints in
that zip code for some time period, and the correspond-
ing expectation bi may represent the expected number of
respiratory ED visits in that zip code for that time period,
estimated from historical data. We then wish to detect
any spatial regions S where the counts are significantly
higher than expected.

The spatial scan statistic [11] detects clusters of increased
counts by searching over a large number of spatial
regions, where each region S consists of some subset of
the locations si, and finding those regions which
maximize some likelihood ratio statistic. Given a set of
alternative hypotheses H1(S) (each representing a cluster
in some region S) and a null hypothesis H0 (representing
no clusters), the likelihood ratio F(S) for a given region S
is the ratio of the data likelihoods under the alternative
and null hypotheses:

F S
H S

H
( )

Pr( | ( ))
Pr( | )

= Data
Data

1
0

If the null or alternative hypotheses have any free
parameters, we can compute the likelihood ratio statistic
using the maximum likelihood parameter values [26]:
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Once we have found the regions with the highest scores F
(S), we must still determine which of these high-scoring
regions are statistically significant, and which are likely
to be due to chance. In spatial disease surveillance, the
significant clusters are reported to the user as potential

disease outbreaks which can then be further investigated.
The regions with the highest values of the likelihood
ratio statistic are those which are most likely to have
been generated under the alternative hypothesis (cluster
in region S) instead of the null hypothesis of no clusters.
However, because we are maximizing the likelihood
ratio over a large number of spatial regions, multiple
hypothesis testing is a serious issue, and we are very
likely to find many regions with high likelihood ratios
even when the null hypothesis is true.

Kulldorff's original spatial scan approach [11] deals with
this multiple testing issue by "randomization testing",
generating a large number of replica datasets under the
null hypothesis and finding the maximum region score
for each replica dataset. The p-value of a region S is
computed as Rbeat

R
+

+
1

1
, where Rbeat is the number of

replica datasets with maximum region score higher than
F(S), and R is the total number of replica datasets. In
other words, a region S must score higher than
approximately 95% of the replica datasets to be
significant at a = .05. As discussed below, several other
approaches exist for determining the statistical signifi-
cance of detected regions, and these alternatives may be
preferable in some cases.

Variants of the spatial scan statistic
We consider three different variants of the spatial scan
statistic: Kulldorff's original Poisson scan statistic [11]
and the recently proposed expectation-based Poisson
[21] and expectation-based Gaussian [22] statistics. We
will refer to these statistics as KULL, EBP, and EBG
respectively. Each of these statistics makes a different set
of model assumptions, resulting in a different score
function F(S). More precisely, they differ based on two
main criteria: which distribution is used as a generative
model for the count data (Poisson or Gaussian), and
whether we adjust for the observed and expected counts
outside the region under consideration.

The Poisson distribution is commonly used in epide-
miology to model the underlying randomness of
observed case counts, making the assumption that the
variance is equal to the mean. If this assumption is not
reasonable (i.e. counts are "overdispersed" with variance
greater than the mean, or "underdispersed" with variance
less than the mean), we should instead use a distribution
which separately models mean and variance. One simple
possibility is to assume a Gaussian distribution, and
both the Poisson and Gaussian distributions lead to
simple and easily computable score functions F(S).
Other recently proposed spatial cluster detection meth-
ods have considered negative binomial [27], semi-
parametric [28], and nonparametric [29] distributions,
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and these more complex model assumptions might be
preferable in cases where neither Poisson nor Gaussian
distributions fit the data.

A second distinction in our models is whether the score
function F(S) adjusts for the observed and expected
counts outside region S. The traditional Kulldorff scan
statistic uses the ratio of observed to expected count (i.e.
the observed relative risk) inside and outside region S,
detecting regions where the risk is higher inside than
outside. The expectation-based approaches (EBP and
EBG) do not consider the observed and expected counts
outside region S, but instead detect regions where the
observed relative risk is higher than 1, corresponding to a
higher than expected count.

All three methods assume that each observed count ci is
drawn from a distribution with mean proportional to
the product of the expected count bi and an unknown
relative risk qi. For the two Poisson methods, we assume
ci ~ Poisson(qibi), and for the expectation-based Gaus-
sian method, we assume ci ~ Gaussian(qi bi, si). The
expectations bi are obtained from time series analysis of
historical data for each location si. For the Gaussian
statistic, the variance s i

2 can also be estimated from the
historical data for location si, using the mean squared
difference between the observed counts ci

t and the
corresponding estimated counts bi

t .

Under the null hypothesis of no clusters H0, the
expectation-based statistics assume that all counts are
drawn with mean equal to their expectations, and thus
qi = 1 everywhere. Kulldorff's statistic assumes instead
that all counts are drawn with mean proportional to their
expectations, and thus qi = qall everywhere, for some
unknown constant qall. The value of qall is estimated by

maximum likelihood: qall
Call
Ball

= , where Call and Ball are

the aggregate observed count ∑ ci and aggregate expected
count ∑ bi for all locations si respectively.

Under the alternative hypothesis H1(S), representing a
cluster in region S, the expectation-based statistics
assume that the expected counts inside region S are
multiplied by some constant qin > 1, and thus qi = qin
inside region S and qi = 1 outside region S. The value of
qin is estimated by maximum likelihood. For the
expectation-based Poisson statistic, the maximum like-
lihood value of qin is Cin

Bin
, where Cin and Bin are the

aggregate count cis Si∈∑ and aggregate expectation

bis Si∈∑ respectively. For the expectation-based Gaus-

sian statistic, the maximum likelihood value of qin
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These sufficient statistics can be interpreted as weighted
sums of the counts ci and expectations bi respectively,
where the weighting of a location si is inversely

proportional to the coefficient of variation s i
bi

2
. The

resulting likelihood ratio statistics are:
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for ′ > ′C Bin in , and FEBG(S) = 1 otherwise. Note that these
likelihood ratio statistics are only dependent on the
observed and expected counts inside region S, since the
data outside region S is assumed to be generated from
the same distribution under the null and alternative
hypotheses. Detailed derivations of these two statistics
are provided in [22].

Kulldorff's scan statistic uses fundamentally different
assumptions than the expectation-based statistics: under
the alternative hypothesis H1(S) of a cluster in region S,
it assumes that the expected counts inside and outside
region S are multiplied by some unknown constants qin
and qout respectively, where qin > qout. In this case, the

maximum likelihood estimate of qin is Cin
Bin

as in the

expectation-based Poisson statistic, and the maximum

l ike l ihood es t imate o f q o u t i s Cout
Bout

, where

C cout is Si
= ∉∑ and B bout is Si
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resulting likelihood ratio statistic is:
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> , and FKULL(S) = 1 otherwise. Note that

Kulldorff's statistic does consider the counts and
expectations outside region S, and will only detect
increased counts in a region S if the ratio of observed
to expected count is higher inside the region than

outside. Also, the term Call
Ball

Call( )−
is identical for all
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regions S for a given day of data, and can be omitted
when computing the highest-scoring region. However,
this term is necessary to calibrate scores between
different days (e.g. when computing statistical signifi-
cance). Detailed derivations of Kulldorff's statistic are
found in [11] and [22].

It is an open question as to which of these three spatial
scan statistics will achieve the highest detection
performance in real-world outbreak detection scenar-
ios. We hypothesize that EBG will outperform EBP for
datasets which are highly overdispersed (since in this
case the Poisson assumption of equal mean and
variance is incorrect) and which have high average
daily counts (since in this case the discrete distribution
of counts may be adequately approximated by a
continuous distribution). Furthermore, we note that
Kulldorff's statistic will not detect a uniform, global
increase in counts (e.g. if the observed counts were
twice as high as expected for all monitored locations),
since the ratio of risks inside and outside the region
would remain unchanged. We hypothesize that this
feature will harm the performance of KULL for
outbreaks which affect many zip codes and thus have

a large impact on the global risk Call
Ball

. In recent work,

we have shown empirically that EBP outperforms KULL
for detecting large outbreaks in respiratory Emergency
Department visit data [30], and we believe that this
will be true for the other datasets considered here as
well. However, KULL may be more robust to mis-
estimation of global trends such as day of week and
seasonality, possibly resulting in improved detection
performance.

Using the spatial scan statistic for prospective disease
surveillance
In the typical prospective surveillance setting [31], we
infer the expected counts for each location from the time
series of historical data. Let us assume that for each
spatial location si, we have a time series of counts ci

t for
t = 0 ... tmax, where time 0 represents the present. Our
goal is to find any region S for which the most recent W
counts are significantly higher than expected, where W
denotes the temporal window size. In the more general,
space-time setting, we must find the maximum of the
score function F(S) over all spatial regions S and all
temporal windows W = 1 ... Wmax. Space-time scan
statistics are considered in detail in [21,31,32]; here we
consider the purely spatial setting with a fixed window
size of W = 1. In this simplified setting, we must
compute the expected counts bi

0 for the current day
from the time series of counts ci

t , using some method of
time series analysis, and then find spatial regions where

the current day's counts are significantly higher than
expected. Here we consider four variants of the 28-day
moving average (MA), with and without adjustments for
day of week and seasonality. The MA method computes
expectations as follows:

b ci
t

i
u

u t t

=
= + +
∑1

28
1 28...

The moving average may be adjusted for day of week
trends (MA-DOW) by computing the proportion of
counts b i

j occurring in each location si on each day of
the week (j = 1 ... 7), using 12 weeks of historical data:

b i
j

ci
t

t j j j

ci
t

t
= = + +∑

=∑

, ,...,

..

7 77

1 84

When we predict the expected count for a given location
on a given day, we choose the corresponding value of b i

j

and multiply our estimate by 7 b i
j . This method of static

adjustment for day of week assumes that weekly trends
have a constant and multiplicative effect on counts for
each spatial location. This is similar to the log-linear
model-adjusted scan statistic proposed by Kleinman et
al. [24], with the difference that we use only the most
recent data rather than the entire dataset to fit the
model's parameters.

The 28-day moving average takes seasonality into
account by only using the most recent four weeks of
data, but it may lag behind fast-moving seasonal trends,
causing many false positives (if it underestimates
expected counts for an increasing trend) or false
negatives (if it overestimates expected counts for a
decreasing trend). Thus we can perform a simple
seasonal adjustment by multiplying the 28-day moving
average by the ratio of the "global" 7-day and 28-day
moving averages:

b
ci
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iu t t
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iu t t

ci
t

i
u

u t
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∑= + +∑
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×

= +

1
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1
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1
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... ....t+
∑

28

This "moving average with current week adjustment"
(MA-WK) method has the effect of reducing the lag time
of our estimates of global trends. One potential
disadvantage is that our estimates of the expected counts
using the 7-day average may be more affected by an
outbreak (i.e. the estimates may be contaminated with
outbreak cases), but using global instead of local counts
reduces the variance of our estimates and also reduces
the bias resulting from contamination. We can further
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adjust for day of week (MA-WK-DOW) by multiplying
by seven times the appropriate b i

j , as discussed above.

Results
Datasets for evaluation
We obtained four datasets consisting of real public
health data for Allegheny County: respiratory Emergency
Department visits from January 1, 2002 to December 31,
2002, and three categories of over-the-counter sales of
medication (cough/cold and anti-fever) or medical
supplies (thermometers) from October 1, 2004 to
January 4, 2006. We denote these four datasets by ED,
CC, AF, and TH respectively. The OTC datasets were
collected by the National Retail Data Monitor [33]. Due
to data privacy restrictions, daily counts were aggregated
at the zip code level (by patient home zip code for the
ED data, and by store zip code for the OTC data), and
only the aggregate counts were made available for this
study. Each count for the ED dataset represents the
number of patients living in that zip code who went to
an Allegheny County Emergency Department with
respiratory chief complaints on that day. Each count
for the OTC datasets represents the total number of sales
for the given product category in monitored stores in
that zip code on that day. The first 84 days of each
dataset were used for baseline estimates only, giving us
281 days of count data for the ED dataset and 377 days
of count data for each of the over-the-counter datasets.
The ED dataset contains data for 88 distinct Allegheny
County zip codes, while the three OTC datasets each
contain data for 58 different Allegheny zip codes.
Information about each dataset's daily counts (mini-
mum, maximum, mean, and standard deviation) is given
in Table 1, and the time series of daily counts
(aggregated over all monitored zip codes) for each
dataset is shown in Figure 1(a–d). We note that the CC
and AF datasets have much larger average counts than
the ED and TH datasets. All of the datasets exhibit
overdispersion, but the OTC datasets have much more
variability than the ED dataset. All four datasets
demonstrate day-of-week trends, and the weekly patterns
tend to vary significantly for different zip codes.
Additionally, the CC and TH datasets have strong

seasonal trends, while the other two datasets display
much less seasonal variation. Finally, we note that all
three OTC datasets have positively correlated daily
counts, with coefficients of correlation r = .722 for the
AF and CC datasets, r = .609 for the AF and TH datasets,
and r = .804 for the CC and TH datasets respectively.
When the counts were adjusted for known covariates
(day of week, month of year, and holidays) the amount
of correlation decreased, with coefficients of correlation
r = .660 for the AF and CC datasets, r = .418 for the AF
and TH datasets, and r = .462 for the CC and TH datasets
respectively.

Outbreak simulations
Our first set of experiments used a semi-synthetic testing
framework (injecting simulated outbreaks into the real-
world datasets) to evaluate detection power. We con-
sidered a simple class of circular outbreaks with a linear
increase in the expected number of cases over the
duration of the outbreak. More precisely, our outbreak
simulator takes four parameters: the outbreak duration
T, the outbreak severity Δ, and the minimum and
maximum number of zip codes affected, kmin and kmax.
Then for each injected outbreak, the outbreak simulator
randomly chooses the start date of the outbreak tstart,
number of zip codes affected k, and center zip code scenter.
The outbreak is assumed to affect scenter and its k - 1
nearest neighbors, as measured by distance between the
zip code centroids. On each day t of the outbreak, t = 1 ...
T, the outbreak simulator injects Poisson(twi Δ) cases
into each affected zip code, where wi is the "weight" of
each affected zip code, set proportional to its total
count ci

t
t∑ for the entire dataset, and normalized so

that the total weight equals 1 for each injected outbreak.

We performed three simulations of varying size for each
dataset: "small" injects affecting 1 to 10 zip codes,
"medium" injects affecting 10 to 20 zip codes, and
"large" injects affecting all monitored zip codes in
Allegheny County (88 zip codes for the ED dataset,
and 58 zip codes for the three OTC datasets). For the ED
and TH datasets, we used Δ = 3, Δ = 5, and Δ = 10 for
small, medium, and large injects respectively. For the AF
dataset, we used Δ = 30, Δ = 50, and Δ = 100, and for the
CC dataset, we used Δ = 60, Δ = 100, and Δ = 200 for the
three sizes of inject. We used a value of T = 7 for all
outbreaks, and thus all outbreaks were assumed to be
one week in duration. For each combination of the four
datasets and the three outbreak sizes, we considered
1000 different, randomly generated outbreaks, giving a
total of 12,000 outbreaks for evaluation.

We note that simulation of outbreaks is an active area of
ongoing research in biosurveillance. The creation of

Table 1: Dataset description

dataset minimum maximum mean standard deviation

ED 5 62 34.40 8.34
TH 4 99 41.44 17.96
CC 338 5474 2428.46 923.47
AF 83 2875 1321.70 279.88

Minimum, maximum, mean, and standard deviation of daily counts for
each of the four public health datasets (respiratory ED visits, OTC
thermometer sales, OTC cough/cold medication sales, and OTC
anti-fever medication sales).
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realistic outbreak scenarios is important because of the
difficulty of obtaining sufficient labeled data from real
outbreaks, but is also very challenging. State-of-the-art
outbreak simulations such as those of Buckeridge et al.
[34], and Wallstrom et al. [35] combine disease trends
observed from past outbreaks with information about
the current background data into which the outbreak is
being injected, as well as allowing the user to adjust
parameters such as outbreak duration and severity.
While the simple linear outbreak model that we use

here is not a realistic model of the temporal progression
of an outbreak, it is sufficient for testing purely spatial
scan statistics, with the idea that we gradually ramp up
the amount of increase until the outbreak is detected.
The values of Δ were chosen to be large enough that most
methods would eventually detect the outbreak, but small
enough that we would observe significant differences in
detection time between methods. It is worth noting that
a large number of counts must be injected for a
simulated outbreak to be detectable, especially in the

Figure 1
Aggregate time series of counts for four public health datasets. For the ED dataset, each daily count represents the
total number of Emergency Department visits with respiratory chief complaints. For the three OTC datasets, each daily count
represents the total number of sales of medication/medical supplies in the given product category.
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CC and AF datasets. This is a common feature of
syndromic surveillance methods, which rely on detecting
large trends in non-specific health behaviors (as opposed
to a small number of highly indicative disease findings),
and limits the applicability of such methods for
detecting outbreaks where only a small number of
individuals are affected. Since all three methods use
likelihood ratio statistics based on aggregate counts and
baselines, search over the same set of regions, and do not
take the shape of a region into account when computing
its score, we do not expect changes in outbreak shape
(e.g. circles vs. rectangles vs. irregularly shaped out-
breaks) to dramatically affect the relative performance of
these methods. On the other hand, variants of the spatial
scan which search over different sets of regions have
large performance differences depending on outbreak
shape, as demonstrated in [36].

Comparison of detection power
We tested a total of twelve methods: each combination
of the three scan statistics (KULL, EBP, EBG) and the four
time series analysis methods (MA, MA-DOW, MA-WK,
MA-WK-DOW) discussed above. For all twelve methods,
we scanned over the same predetermined set of search
regions. This set of regions was formed by partitioning
Allegheny County using a 16 × 16 grid, and searching
over all rectangular regions on the grid with size up to
8 × 8. Each region was assumed to consist of all zip codes
with centroids contained in the given rectangle. We note
that this set of search regions is different than the set of
inject regions used by our outbreak simulator: this is
typical of real-world outbreak detection scenarios, where
the size and shape of potential outbreaks are not known
in advance. Additionally, we note that expected counts
(and variances) were computed separately for each zip
code, prior to our search over regions. As discussed
above, we considered four different datasets (ED, TH,

CC, and AF), and three different outbreak sizes for each
dataset. For each combination of method and outbreak
type (dataset and inject size), we computed the method's
proportion of outbreaks detected and average number of
days to detect as a function of the allowable false
positive rate.

To do this, we first computed the maximum region score
F* = maxS F(S) for each day of the original dataset with
no outbreaks injected (as noted above, the first 84 days
of data are excluded, since these are used to calculate
baseline estimates for our methods). Then for each
injected outbreak, we computed the maximum region
score for each outbreak day, and determined what
proportion of the days for the original dataset have
higher scores. Assuming that the original dataset
contains no outbreaks, this is the proportion of false
positives that we would have to accept in order to have
detected the outbreak on day t. For a fixed false positive
rate r, the "days to detect" for a given outbreak is
computed as the first outbreak day (t = 1 ... 7) with
proportion of false positives less than r. If no day of the
outbreak has proportion of false positives less than r, the
method has failed to detect that outbreak: for the
purposes of our "days to detect" calculation, these are
counted as 7 days to detect, but could also be penalized
further.

The detection performance of each of the 12 methods is
presented in Tables 2 and 3. For each combination of
dataset (ED, TH, CC, AF) and outbreak size (large,
medium, small), we present each method's average days
to detection and percentage of outbreaks detected at a
fixed false positive rate of 1/month.

For the datasets of respiratory Emergency Department
visits (ED) and over-the-counter sales of thermometers
(TH) in Allegheny County, the EBP methods displayed

Table 2: Comparison of detection power on ED and TH datasets, for varying outbreak sizes

method ED large ED medium ED small TH large TH medium TH small

KULL MA 6.05 (35.4%) 3.11 (98.4%) 3.67 (84.9%) 6.58 (12.8%) 4.36 (92.8%) 4.06 (93.1%)
KULL MA-DOW 5.74 (39.7%) 3.04 (98.3%) 3.60 (85.1%) 6.54 (12.2%) 4.36 (92.4%) 4.06 (92.2%)
KULL MA-WK 6.01 (37.0%) 3.11 (98.5%) 3.65 (85.0%) 6.57 (13.1%) 4.36 (92.8%) 4.06 (93.1%)
KULL MA-WK-DOW 5.74 (40.0%) 3.04 (98.3%) 3.61 (85.1%) 6.54 (12.3%) 4.36 (92.4%) 4.06 (92.2%)
EBP MA 2.46 (100%) 2.45 (99.8%) 3.19 (90.1%) 3.31 (99.5%) 3.35 (99.3%) 3.60 (97.6%)
EBP MA-DOW 2.46 (100%) 2.44 (99.7%) 3.28 (90.0%) 3.27 (99.6%) 3.46 (99.3%) 3.79 (96.5%)
EBP MA-WK 2.50 (100%) 2.45 (99.7%) 3.18 (89.0%) 3.53 (96.3%) 3.39 (99.0%) 3.60 (96.3%)
EBP MA-WK-DOW 2.55 (100%) 2.51 (99.6%) 3.32 (88.5%) 3.64 (93.2%) 3.56 (97.5%) 3.81 (94.7%)
EBG MA 2.98 (100%) 2.77 (99.9%) 3.37 (88.4%) 4.46 (88.8%) 4.34 (90.2%) 4.27 (86.6%)
EBG MA-DOW 3.04 (100%) 2.90 (99.4%) 3.41 (88.3%) 5.00 (78.4%) 4.94 (77.9%) 4.76 (74.5%)
EBG MA-WK 2.99 (99.9%) 2.78 (99.8%) 3.35 (88.8%) 4.71 (79.8%) 4.42 (88.2%) 4.31 (85.1%)
EBG MA-WK-DOW 3.15 (99.7%) 2.97 (98.8%) 3.40 (87.9%) 5.24 (63.2%) 5.02 (73.1%) 4.76 (73.6%)

Average days to detection, and percentage of outbreaks detected, at 1 false positive per month. Methods in bold are not significantly different (in
terms of days to detect, at a = .05) from the best-performing method.
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the highest performance for all three outbreak sizes, as
measured by the average time until detection and
proportion of outbreaks detected. There were no
significant differences between the four variants of EBP,
suggesting that neither day-of-week nor seasonal correc-
tion is necessary for these datasets. For small outbreaks,
the EBG and KULL methods performed nearly as well as
EBP (between 0.1 and 0.6 days slower). However, the
differences between methods became more substantial
for the medium and large outbreaks: for large outbreaks,
EBG detected between 0.5 and 1.5 days slower than EBP,
and KULL had very low detection power, detecting less
than 40% of outbreaks and requiring over three
additional days for detection.

For the dataset of cough and cold medication sales (CC)
in Allegheny County, the most notable difference was
that the time series methods with adjustment for
seasonal trends (MA-WK) outperformed the time series
methods that do not adjust for seasonality, achieving 1–
2 days faster detection. The relative performance of the
EBP, EBG, and KULL statistics was dependent on the size
of the outbreak. However, the variants of the EBP
method with adjustment for seasonality (EBP MA-WK
and EBP MA-WK-DOW) were able to achieve high
performance across all outbreak sizes. For small to
medium-sized outbreaks, KULL outperformed EBP by a
small but significant margin (0.3 to 0.5 days faster
detection) when adjusted for day of week, and
performed comparably to EBP without day-of-week
adjustment. For large outbreaks, KULL again performed
poorly, detecting three days later than EBP, and only
detecting 15–61% of outbreaks (as compared to 98–99%
for EBP).

For the dataset of anti-fever medication sales (AF) in
Allegheny County, the results were very similar to the CC
dataset, except that seasonal adjustment (MA-WK) did

not improve performance. EBP methods performed best
for large outbreaks and achieved consistently high
performance across all outbreak sizes, while KULL
outperformed EBP by about 1.2 days for small to
medium-sized outbreaks. As in the other datasets,
KULL had very low power to detect large outbreaks,
detecting less than 25% of outbreaks and requiring more
than six days to detect.

Effects of outbreak size
To further quantify the relationship between outbreak size
and detection power, we measured the average number of
injected cases needed for each method to detect 90% of
outbreaks at 1 false positive per month, as a function of the
number of zip codes affected. For this experiment, we used
the same time series method for each detection method
(MA-WK for the CC dataset, andMA for the other datasets).
We also used the same set of scan regions for each detection
method, searching over the set of distinct circular regions
centered at each zip code, as in [11]. For each combination
of detection method and dataset, we computed the
maximum region score F* = maxS F(S) for each day of the
original dataset with no outbreaks injected. We then
computed the 96.7th percentile of these scores, obtaining
the "threshold score" needed for detection at 1 false positive
per month for that detection method for that dataset. Next
we considered each distinct circular region (centered at one
of the monitored zip codes) for each day of the original
dataset. For each such region S, we recorded the number of
zip codes contained in that region and computed the
minimum number of injected cases (increase in count)
needed for the score F(S) to become higher than the
threshold. We assumed that injected cases were distributed
among the zip codes in S proportional to the total count of
each zip code. Given the number of cases needed for
detection for each region, we then computed the 90th
percentile of these values for each outbreak size (number of

Table 3: Comparison of detection power on CC and AF datasets, for varying outbreak sizes

method CC large CC medium CC small AF large AF medium AF small

KULL MA 6.43 (14.8%) 2.53 (100%) 2.33 (99.5%) 6.64 (10.6%) 3.20 (100%) 3.00 (99.3%)
KULL MA-DOW 5.69 (60.8%) 2.25 (100%) 2.06 (99.5%) 6.44 (23.9%) 2.80 (100%) 2.61 (99.4%)
KULL MA-WK 6.43 (14.8%) 2.53 (100%) 2.33 (99.5%) 6.64 (10.6%) 3.20 (100%) 3.00 (99.3%)
KULL MA-WK-DOW 5.69 (60.8%) 2.25 (100%) 2.06 (99.5%) 6.44 (23.9%) 2.80 (100%) 2.61 (99.4%)
EBP MA 4.61 (87.5%) 4.07 (96.7%) 4.13 (94.0%) 4.22 (99.4%) 3.95 (99.9%) 3.87 (98.0%)
EBP MA-DOW 4.59 (88.6%) 4.06 (95.8%) 4.10 (94.4%) 4.70 (97.5%) 4.37 (99.0%) 4.32 (95.9%)
EBP MA-WK 3.30 (98.2%) 2.76 (100%) 2.83 (99.2%) 4.64 (82.5%) 4.07 (98.2%) 3.87 (96.7%)
EBP MA-WK-DOW 3.07 (98.7%) 2.58 (99.9%) 2.57 (99.3%) 4.65 (83.8%) 4.01 (98.5%) 3.89 (97.0%)
EBG MA 4.73 (80.7%) 4.30 (89.5%) 4.43 (76.5%) 4.80 (91.4%) 4.56 (94.5%) 4.47 (84.1%)
EBG MA-DOW 4.81 (80.5%) 4.36 (89.8%) 4.54 (75.0%) 4.96 (89.2%) 4.68 (93.2%) 4.70 (78.9%)
EBG MA-WK 3.73 (91.5%) 3.07 (99.4%) 3.12 (95.4%) 4.93 (75.7%) 4.47 (93.3%) 4.27 (85.9%)
EBG MA-WK-DOW 3.68 (92.4%) 3.03 (99.5%) 3.06 (96.3%) 5.04 (74.0%) 4.54 (92.0%) 4.36 (84.2%)

Average days to detection, and percentage of outbreaks detected, at 1 false positive per month. Methods in bold are not significantly different (in
terms of days to detect, at a = .05) from the best-performing method.
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affected zip codes), giving us the average number of cases
needed to detect 90% of outbreaks at the given acceptable
false positive rate of 1 per month. We present these results
for each of the four datasets in Figure 2(a–d).

In this experiment, we saw substantial differences in the
relative performance of methods between the datasets
with low average daily counts (ED and TH) and the
datasets with high average daily counts (CC and AF). For
the ED and TH datasets, the EBP method outperformed
the EBG and KULL methods (requiring fewer injected
cases for detection) across the entire range of outbreak
sizes. While EBP and EBG required a number of injected
cases that increased approximately linearly with the
number of affected zip codes, KULL showed dramatic
decreases in detection power and required substantially
more injected cases when more than 1/3 of the zip codes
were affected. For the CC and AF datasets, EBP and EBG
again required a number of injected cases that increased
approximately linearly with the number of affected
zip codes, with EBP outperforming EBG. KULL out-
performed EBP when less than 2/3 of the zip codes were

affected, but again showed very low detection power as
the outbreak size became large.

Calibration of spatial scan statistics
In typical public health practice, randomization testing is
used to evaluate the statistical significance of the clusters
discovered by spatial scanning, and all regions with
p-values below some threshold (typically, a = .05) are
reported. However, randomization testing is computa-
tionally expensive, multiplying the computation time by
R + 1, where R is the number of Monte Carlo replications
performed. This substantial increase in computation
time, combined with the need for rapid analysis to detect
outbreaks in a timely fashion, can make randomization
testing undesirable or infeasible. An alternative approach
is to report all regions with scores F(S) above some
threshold. In this case, randomization testing is not
required, but it can be difficult to choose the threshold
for detection. Additionally, since the empirical distribu-
tion of scores for each day's replica datasets may be
different, the regions with highest scores F(S) may not

Figure 2
Detectability results for four public health datasets. Number of injected cases needed for detection of 90% of
outbreaks at 1 false positive per month, as a function of outbreak size. The x-axis of each graph represents the number of
Allegheny County zip codes affected by the outbreak, out of 88 monitored zip codes for the ED dataset and 58 monitored zip
codes for the three OTC datasets.
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correspond exactly to the regions with lowest p-values,
possibly reducing detection power.

We first examined whether the p-values produced by
randomization testing are properly calibrated for our
datasets. For each combination of method and dataset,
we computed the p-value for each day of data with no
outbreaks injected, using randomization testing with R =
100 replications, and reported the proportion of days
that had p-values less than a = 0.05. For a properly
calibrated method, we expect approximately 5% of the
days to be significant at this level, but as can be seen
from Table 4, the proportion of significant days is much
higher for most methods and datasets. For the ED
dataset, the two Poisson methods are properly cali-
brated, with false positive rates near 5%, while EBG has
much higher false positive rates. For the OTC datasets,
none of the methods are calibrated, with false positive
rates ranging from 11–57% at a = .05. These results
suggest that, to achieve an actual false positive rate of a
on our datasets, we must often use a p-value threshold
that is much lower than a. Given a sufficient amount of
historical data with p-values calculated for each day, we
could learn this threshold empirically, using the 100a
percentile value from the historical data, e.g. the 5th
percentile for a = 0.05. Alternatively, we could learn a
threshold on the region score F(S) empirically, using the
100(1 - a) percentile of the historical data, and report all
regions with scores higher than the threshold.

Thus we compared the detection power of each method
with and without randomization testing, using empirically
determined p-value and score thresholds corresponding to
an actual false positive rate of a = .0329 (i.e. 1 false positive
per month). For each combination of method and dataset,
we computed the average days to detect for a set of 100
randomly generated "medium-sized" outbreaks, and

compared performance using the p-value and score thresh-
olds respectively. These results, shown in Table 5, demon-
strate that randomization testing does not improve the
detection power of our methods, and in most cases
significantly harms performance. The poor calibration of
p-values leads to many days with p-values of 1

101 in the
original dataset, and since only 100 Monte Carlo replica-
tions are performed, these days cannot be reliably distin-
guished from the injected outbreaks.

One potential solution is to perform many more Monte
Carlo replications, requiring a further increase in
computation time. To examine this solution, we
recomputed the average number of days to detection
for the EBP MA method on each dataset, using R = 1000
Monte Carlo replications. For the ED and TH datasets,
EBP MA detected outbreaks in an average of 2.45 and
3.10 days respectively; these results were not significantly
different from EBP MA without randomization testing.
For the CC and AF datasets, EBP MA with 1000 Monte
Carlo replications detected outbreaks in 6.17 and 5.29
days respectively, as compared to 4.16 and 3.99 days for
EBP MA without randomization. The significant differ-
ences in detection time for these two datasets demon-
strate that, when p-values are severely miscalibrated,
randomization testing harms performance even when
the number of replications is large.

Recent work by Abrams et al. [37] suggests another
potential solution to the miscalibration of p-values: to fit
a Gumbel distribution to the distribution of maximum
region scores obtained by randomization, and to
compute the p-value of the discovered regions using

Table 4: False positive rates with randomization testing

method ED
dataset

TH
dataset

CC
dataset

AF
dataset

KULL MA .046 .141 .544 .358
KULL MA-DOW .050 .146 .284 .202
KULL MA-WK .050 .114 .568 .337
KULL MA-WK-DOW .053 .130 .289 .186
EBP MA .068 .162 .517 .403
EBP MA-DOW .071 .141 .409 .340
EBP MA-WK .064 .159 .520 .422
EBP MA-WK-DOW .071 .149 .348 .332
EBG MA .334 .398 .244 .204
EBG MA-DOW .473 .496 .268 .249
EBG MA-WK .349 .390 .218 .226
EBG MA-WK-DOW .466 .485 .252 .249

Proportion of days significant at a = 0.05, for each of the four public
health datasets with no outbreaks injected.

Table 5: Detection power with and without randomization
testing

method ED
dataset

TH
dataset

CC
dataset

AF
dataset

KULL MA 3.23/3.23 4.41/4.23 5.40/2.55 4.52/3.19
KULL MA-DOW 3.45/3.04 4.95/4.09 3.73/2.26 3.65/2.80
KULL MA-WK 3.31/3.23 5.26/4.23 6.04/2.55 5.30/3.19
KULL MA-WK-DOW 3.19/3.04 5.20/4.09 3.57/2.26 3.99/2.80
EBP MA 2.54/2.50 3.95/3.29 6.36/4.16 5.89/3.99
EBP MA-DOW 2.65/2.53 3.51/3.44 4.59/4.10 5.62/4.36
EBP MA-WK 2.74/2.50 5.04/3.40 5.84/2.70 5.11/3.92
EBP MA-WK-DOW 2.92/2.59 4.31/3.75 5.05/2.47 5.30/4.00
EBG MA 4.50/2.91 5.90/4.19 4.94/4.43 4.92/4.63
EBG MA-DOW 5.48/3.01 5.15/4.66 5.61/4.50 5.00/4.79
EBG MA-WK 4.87/2.87 5.92/4.24 3.82/3.16 4.58/4.43
EBG MA-WK-DOW 5.53/3.04 5.92/4.73 4.90/2.96 4.53/4.56

Average days to detection at 1 false positive per month for "medium-
sized" outbreaks injected into each dataset, using empirically deter-
mined thresholds on p-value (computed by randomization testing) and
score (without randomization testing) respectively. If there is a
significant difference between the detection times with and without
randomization, the better-performing method is marked in bold.
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the resulting cumulative distribution function. These
"empirical/asymptotic" p-values have the benefit of
being able to distinguish between very low p-values
with a relatively small number of Monte Carlo replica-
tions, and thus may allow high detection power even
when the p-values are miscalibrated. For example, in a
severely miscalibrated dataset, without the Gumbel
correction we would be unable to differentiate even
extremely high scoring regions from a large proportion
of the background days, since all of these regions would
have an identical p-value of 1

1R+ . With the Gumbel
correction, many background days would still have very
low p-values, but the extremely high scoring regions
would have even lower p-values than most or all of the
background days. We compare detection power of each
method with and without randomization testing, using
empirical/asymptotic p-values based on 100 Monte
Carlo replications, in Table 6. For most combinations
of method and dataset, we see no significant differences
in the timeliness of detection, suggesting that randomi-
zation testing using the empirical/asymptotic p-values
does not substantially affect detection performance.

In Table 7, we show the empirical score threshold
(without randomization testing) and the empirical p-
value threshold (using randomization testing with
empirical/asymptotic p-values) needed to achieve an
actual false positive rate of 1/month on each of the four
datasets for each detection method. These results
confirm that randomization testing is miscalibrated for
the three OTC datasets, and that a nominal false positive
rate much lower than a = .05 is needed to achieve an

acceptable level of false positives in practice. While the
values in the table provide some preliminary guidance
for calibrating detection methods with or without
randomization testing, we note that the thresholds can
differ dramatically between datasets. Thus we recom-
mend obtaining at least one full year of historical data
from a given data source when possible, since this
approach would account for holidays and seasonal
trends, and using this historical data for calibration. In
this case, randomization testing is unnecessary since
using the empirically determined score threshold
achieves similar detection power and is much less
computationally expensive. When little or no historical
data can be obtained, and sufficient computational
resources are available, it might be easier to estimate
an appropriate p-value threshold a (e.g. using a = 0.05
for datasets where we expect the scan statistic to be
correctly calibrated) and perform randomization testing
using empirical/asymptotic p-values.

Discussion
A number of other evaluation studies have compared the
performance of spatial detection methods. These include
studies comparing the spatial scan statistic to other spatial
detection methods [38,39], comparing different sets of
search regions for the spatial scan [20,36], comparing
spatio-temporal and purely temporal scan statistics [40],
and comparing different likelihood ratio statistics within
the spatial scan framework [27,41]. To our knowledge,
none of these studies compare a large number of spatial
scan variants across multiple datasets and specifically
examine the effects of dataset characteristics (e.g. average
daily count, seasonal and day-of-week trends) and out-
break size (e.g. number of affected zip codes) on the
relative performance of methods, as in the present work.

Nevertheless, it is important to acknowledge several
limitations of the current study, which limit the general-
ity of the conclusions that can be drawn from these
experiments. First, this paper focuses specifically on the
scenario of monitoring syndromic data from a small area
(a single county) on a daily basis, with the goal of
rapidly detecting emerging outbreaks of disease. In this
case, we wish to detect higher than expected recent
counts of health-related behaviors (hospital visits and
medication sales) which might be indicative of an
outbreak, whether these increases occur in a single zip
code, a cluster of zip codes, or even the entire monitored
county. This is different than the original use of spatial
scan statistics for analysis of spatial patterns of chronic
illnesses such as cancer, where we may not compare
observed and expected counts, but instead attempt to
detect clusters with higher disease rates inside than
outside. Similarly, while we focused on county-level

Table 6: Detection power with and without randomization
testing, using empirical/asymptotic p-values

method ED
dataset

TH
dataset

CC
dataset

AF
dataset

KULL MA 3.17/3.23 4.24/4.23 2.60/2.55 3.18/3.19
KULL MA-DOW 3.26/3.04 4.23/4.09 2.26/2.26 2.83/2.80
KULL MA-WK 3.21/3.23 4.02/4.23 2.58/2.55 3.08/3.19
KULL MA-WK-DOW 3.21/3.04 4.03/4.09 2.41/2.26 2.82/2.80
EBP MA 2.48/2.50 3.28/3.29 3.42/4.16 3.90/3.99
EBP MA-DOW 2.49/2.53 3.57/3.44 3.14/4.10 4.20/4.36
EBP MA-WK 2.67/2.50 3.64/3.40 3.08/2.70 4.62/3.92
EBP MA-WK-DOW 2.92/2.59 4.02/3.75 2.90/2.47 4.53/4.00
EBG MA 2.84/2.91 4.00/4.19 4.52/4.43 4.35/4.63
EBG MA-DOW 3.05/3.01 4.92/4.66 4.67/4.50 4.83/4.79
EBG MA-WK 2.91/2.87 4.20/4.24 3.25/3.16 4.51/4.43
EBG MA-WK-DOW 2.95/3.04 4.99/4.73 3.08/2.96 4.46/4.56

Average days to detection at 1 false positive per month for "medium-
sized" outbreaks injected into each dataset, using empirically determined
thresholds on p-value (computed by randomization testing, using
empirical/asymptotic p-values [37]) and score (without randomization
testing) respectively. If there is a significant difference between the
detection times with and without randomization, the better-performing
method is marked in bold.
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surveillance, responsibility for outbreak detection ranges
across much broader levels of geography (e.g. state,
national, and international), and larger-scale disease
surveillance efforts might have very different operational
requirements and limitations. Second, spatial syndromic
surveillance approaches (including all of the methods
considered in this study) might not be appropriate for all
types of disease outbreaks. Our simulations focused on
outbreaks for which these approaches are likely to have
high practical utility. Such outbreaks would affect a large
number of individuals (thus creating detectable increases
in the counts being monitored), exhibit spatial clustering
of cases (since otherwise spatial approaches might be
ineffective), and have non-specific early-stage symptoms
(since otherwise earlier detection might be achieved by
discovering a small number of highly indicative disease
findings). Third, our retrospective analysis did not
account for various sources of delay (including lags in
data entry, collection, aggregation, analysis, and report-
ing) which might be present in prospective systems. Any
of these sources might result in additional delays
between the first cases generated by an outbreak and
its detection by a deployed surveillance system. Simi-
larly, the absolute results (number of days to detect) are
highly dependent on the number and spatial distribu-
tion of injected cases; for these reasons, the comparative
performance results reported here should not be inter-
preted as an absolute operational metric. Fourth, while
differences in the relative performance of methods
between datasets demonstrate the importance of using
multiple datasets for evaluation, this study was limited
by data availability to consider only four datasets from a
single county, three of which were different categories of
OTC sales from the same year. Expansion of the
evaluation to a larger number of datasets, with a higher
degree of independence between datasets, would provide
an even more complete picture of the relative perfor-
mance of methods. Finally, this analysis used existing

health datasets which were aggregated to the zip code
level prior to being made available for this study. Data
aggregation was necessary to protect patient privacy and
preserve data confidentiality, but can result in various
undesirable effects related to the "modifiable areal unit
problem" (MAUP) [42], including reduced variability
between areas, and decreased power to detect very small
affected regions, at higher levels of aggregation. How-
ever, the likelihood ratio statistics presented here, and
the various methods of computing expected counts,
involve only means and variances, which are resistant to
aggregation effects [43]. Additionally, Gregorio et al. [44]
did not find significant effects of aggregation for spatial
scan statistics when comparing zip code, census tract,
and finer resolutions. Thus we believe that the compara-
tive results presented here (if not necessarily the absolute
results) will be relatively stable across different levels of
aggregation.

Next, we consider several issues regarding the detection
of large outbreaks affecting most or all of the monitored
zip codes. In the original spatial scan setting, where the
explicitly stated goal was to detect significant differences
in disease rate inside and outside a region, such
widespread increases might not be considered relevant,
or might be interpreted as a decreased disease rate
outside the region rather than an increased rate inside
the region. However, our present work focuses on the
detection of emerging outbreaks which result in
increased counts, and when we are monitoring a small
area (e.g. a single county), many types of illness might
affect a large portion of the monitored area. In this case,
it is essential to detect such widespread patterns of
disease, and to distinguish whether differences in risk are
due to higher than expected risk inside the region or
lower than expected risk outside the region. Kulldorff's
description of the SaTScan software [1] does include the
caveat that KULL is not intended for detection of large

Table 7: Score and p-value thresholds corresponding to one false positive per month

method ED dataset TH dataset CC dataset AF dataset

KULL MA 7.3/0.029 10.6/3.7 × 10-3 25.0/2.4 × 10-7 18.6/9.0 × 10-6

KULL MA-DOW 6.0/0.034 8.7/4.6 × 10-3 15.4/4.8 × 10-5 12.0/5.9 × 10-4

KULL MA-WK 7.3/0.025 10.6/5.3 × 10-3 25.0/2.0 × 10-7 18.6/1.0 × 10-5

KULL MA-WK-DOW 6.0/0.033 8.7/5.6 × 10-3 15.4/6.0 × 10-5 12.0/3.2 × 10-4

EBP MA 6.7/0.025 10.3/2.6 × 10-3 68.6/3.7 × 10-13 31.4/1.3 × 10-11

EBP MA-DOW 6.0/0.029 9.2/1.9 × 10-3 57.8/2.6 × 10-11 30.9/1.7 × 10-9

EBP MA-WK 6.4/0.030 10.2/2.8 × 10-3 34.9/1.4 × 10-12 33.9/3.0 × 10-14

EBP MA-WK-DOW 6.0/0.019 9.1/3.2 × 10-3 26.8/5.3 × 10-11 29.4/6.3 × 10-10

EBG MA 13.9/4.5 × 10-5 20.9/2.1 × 10-7 28.6/8.2 × 10-11 19.9/6.1 × 10-7

EBG MA-DOW 15.9/2.7 × 10-6 27.9/3.4 × 10-11 30.8/3.5 × 10-13 23.7/2.1 × 10-8

EBG MA-WK 13.5/6.1 × 10-5 21.0/3.1 × 10-7 16.7/1.2 × 10-6 17.5/2.1 × 10-6

EBG MA-WK-DOW 16.0/2.2 × 10-6 26.8/1.6 × 10-11 19.4/7.1 × 10-8 20.9/6.0 × 10-8

Score threshold (computed without randomization testing) and p-value threshold (computed by randomization testing, using empirical/asymptotic
p-values) corresponding to an observed false positive rate of 0.0329, i.e. one false positive per month.
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outbreaks affecting more than 50% of the monitored
population. Nevertheless, SaTScan is often used as a tool
(and in some cases, as the only automated surveillance
tool) for outbreak detection at the county level, and it is
important for practitioners to be aware that this tool has
very low power for outbreaks affecting a large proportion
of the monitored area. Use of the expectation-based
Poisson scan statistic instead of Kulldorff's original statistic
would solve this problem and provide high detection power
across the entire range of possible outbreak sizes. Finally, it
has been suggested that such large outbreaks might be
detected better by a purely temporal alerting method
instead of a spatial or spatio-temporal method. While this
is likely to be true for outbreaks affecting all or nearly all of
the monitored zip codes, temporal alerting methods have
much lower power for small outbreak sizes, and are unable
to accurately determine which subset of the monitored area
has been affected by an outbreak.While simultaneous use of
spatial scan and temporal alerting methods is a practical
possibility, it is important to note that this creates amultiple
testing issue, and each method must operate at a lower
sensitivity level tomaintain a combined false positive rate of
a. Evaluation of such combinations of multiple detection
methods are beyond the scope of the present work, but we
note that no prior work has demonstrated that these would
be more effective than a single spatial scan method (such as
EBP)with high power to detect and pinpoint both small and
large affected regions, and the use of a single tool instead of
multiple tools has significant practical advantages as well.

It is also informative to consider our empirical results (in
which EBP outperformed KULL for large outbreak sizes
on all four datasets, and for small outbreak sizes on two
of four datasets) in light of the theoretical results of
Kulldorff [11], who proves that KULL is an individually
most powerful test for detecting spatially localized
clusters of increased risk (qin > qout) as compared to the
null hypothesis of spatially uniform risk (qin = qout = qall).
While KULL is optimal for differentiating between these
two hypotheses, it is not necessarily optimal for
differentiating between outbreak and non-outbreak
days which do not correspond to these specific hypoth-
eses. Even when no outbreaks are occurring, the real-
world health datasets being monitored are unlikely to
correspond to the hypothesis of independent Poisson-
distributed counts and spatially uniform risk; they may
be overdispersed, exhibit spatial and temporal correla-
tions, and contain outliers or other patterns due to non-
outbreak events. Similarly, real-world outbreaks may not
result in a constant, multiplicative increase in expected
counts for the affected region, as assumed by KULL.
Finally, we note that Kulldorff's notion of an "individu-
ally most powerful" test is somewhat different than that
of a "uniformly most powerful" test, being geared
mainly toward correct identification of the affected

cluster as opposed to determination of whether or not
the monitored area contains any clusters. Our empirical
results demonstrate that high detection power in the
theoretical setting (assuming ideal data generated
according to known models) may not correspond to
high detection power in real-world scenarios when the
given model assumptions are violated.

Conclusion
This study compared the performance of twelve variants of
the spatial scan statistic on the detection of simulated
outbreaks injected into four different real-world public
health datasets. We discovered that the relative performance
ofmethods differs substantially depending on the size of the
injected outbreak and various characteristics of the dataset
(average daily count, andwhether day-of-week and seasonal
trends are present). Our results demonstrate that the
traditional (Kulldorff) spatial scan statistic approach per-
forms poorly for detecting large outbreaks that affect more
than two-thirds of the monitored zip codes. However, the
recently proposed expectation-based Poisson (EBP) and
expectation-based Gaussian (EBG) statistics achieved high
detection performance across all outbreak sizes, with EBP
consistently outperforming EBG. For small outbreaks, EBP
outperformed Kulldorff's statistic on the two datasets with
low average daily counts (respiratory ED visits and OTC
thermometer sales), while Kulldorff's statistic outperformed
EBP on the two datasets with high average counts (OTC
cough/cold and anti-fevermedication sales). Using a simple
adjustment for seasonal trends dramatically improved the
performance of all methods when monitoring cough/cold
medication sales, and adjusting for day-of-week improved
the performance of Kulldorff's statistic on the cough/cold
and anti-fever datasets. In all other cases, a simple 28-day
moving average was sufficient to predict the expected counts
in each zip code for each day. Finally, our results
demonstrate that randomization testing is not necessary
for spatial scan methods, when performing small-area
syndromic surveillance to detect emerging outbreaks of
disease. No significant performance gains were obtained
from randomization on our datasets, and in many cases the
resulting p-values were miscalibrated, leading to high false
positive rates and reduced detection power.

These results suggest the following practical recommen-
dations regarding the use of spatial scan methods for
outbreak detection:

1. When evaluating the relative performance of
different spatial scan methods, we recommend
using a variety of different datasets and outbreak
characteristics for evaluation, since focusing only on
a single outbreak scenario may give a misleading
picture of which methods perform best.
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2. The traditional (Kulldorff) spatial scan statistic has
very poor performance for large outbreak sizes, and
thus we recommend the use of the expectation-based
Poisson (EBP) statistic instead when large outbreaks
are of potential interest. If only small outbreaks are of
interest, we recommend the use of EBP on datasets
with low average daily counts and Kulldorff's statistic
on datasets with high average daily counts.

3. Adjustments for seasonal and day-of-week trends
can significantly improve performance in datasets
where these trends are present.

4. If a sufficient amount of historical data is
available, we recommend empirical calibration of
likelihood ratio scores (using the historical distribu-
tion of maximum region scores) instead of the
current practice of statistical significance testing by
randomization. If little historical data is available, we
recommend the use of empirical/asymptotic p-
values, and a threshold much lower than a = .05
may be necessary to avoid high false positive rates.

We are in the process of using the evaluation framework
given here to compare a wide variety of other spatial
biosurveillance methods, including Bayesian [3,4,25] and
nonparametric [29] scan statistics. Also, all of the methods
discussed here can be extended to the space-time scan
statistic setting, allowing the temporal duration of detected
clusters to vary. Our evaluation framework can be used to
compare these space-time cluster detection methods, but
the set of injected outbreaksmust also be varied with respect
to their temporal characteristics such as duration and rate of
growth. Based on the preliminary results in [21], we expect
that longer temporal window sizes will be appropriate for
outbreaks that emerge more slowly, and that small but
significant gains in detection power can be achieved by
considering "emerging cluster" extensions of EBP that
model the increase in disease rate over time. Finally, though
we have focused here on the question of which statistical
methods are most effective for spatial scan assuming a fixed
set of search regions, this evaluation framework can also be
applied to address the orthogonal question of which set of
search regions to choose. A systematic comparison using the
methodology presented here, but using a much wider
variety of outbreak shapes, may likewise give a better idea of
what sets of regions are most appropriate for different
combinations of dataset and outbreak type.
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